In CotLS chapter 5, Maytera Marble/Rose thinks "... as predictably as the sixth term in a Fibonacci series of ten was an eleventh of the whole."<br><br>This is peculiar, because the Fibonacci series is:<br>1. 1<br>
2. 1<br>3. 2<br>4. 3<br>5. 5<br>6. 8<br>7. 13<br>8. 21<br>9. 34<br>10. 55<br><br>The sum of the first ten terms is 143 = 11*13, so it's the seventh term that is the eleventh of the whole, not the sixth.<br>The sum of the first nine terms is 88 = 11*8, which means the sixth term is the eleventh of the whole, as stated.<br>
<br>In base 9, our nine is represented as 10. To make the statement correct, we have to translate the "series of ten" in base-9 arithmetic and the "eleventh" in the decimal system.<br><br>Did the Maytera make a mistake, or did Wolfe, or should we revive the old base-9 controversy about Whorl arithmetic? There's another passage where the children seemingly make trvial arithmetic mistakes, as pointed out by Borski.<br>
<br><blockquote style="border-left: 1px solid rgb(204, 204, 204); margin: 0pt 0pt 0pt 0.8ex; padding-left: 1ex;" class="gmail_quote"><div><pre>In _Nightside the Long Sun_, on p. 29, Wolfe has Maytera Marble presiding<br>over a mathematics lesson, "watching the children take nineteen from<br>
twenty-nine and get nine, add seven and seventeen and get twenty-three."<br>This, however, is only possible in a base 9 numbering system, and a strange<br>one at that, since a conventional base 9 system would only include the<br>
digits 0 to 8 (there should thus no 9, 19, or 29).</pre></div></blockquote><div><br> Both statements could be correct if done in base 9, provided we solved the "9" representation problem and allow mixed translations:<br>
  (28+1)(base 9) - (18+1)(base 9) = 9 (decimal)<br>  7(base 9) + 17(base 9) = 23 (decimal)<br><br>There might be some more clues involving costs with cards and bits, if we look for them.<br><br><br></div>